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bands. This may also have produced the differences in 
the ordering of the conduction band states. These latter 
differences could also be due to limitations in the pertur
bation approximation to the orthogonalized-plane-wave 
method which was used by Knox and Bassani. 

One interesting observation regarding the conduction 
bands for argon is the similarity between these bands 
and those obtained for face-centered cubic iron by 
Wood* and for copper by Burdick16 and also by Segall.17 

Aside from minor changes in the ordering of states in the 
As-4p bands (which can be explained by differences in 
lattice spacing), the bands are remarkably similar. This 

16 G. A. Burdick, Phys. Rev. 129, 138 (1963). 
17 B. Segall, Phys. Rev. 125, 109 (1962). 

I. INTRODUCTION 

SECOND sound in superfluid helium was first de
scribed as a collective phonon wave by Landau.1 In 

this description, the "phonon gas" was treated as a 
particle gas in which harmonic phonon-density fluctua
tions could be propagated. This explanation seemed to 
describe a phenomenon so general that many authors2 

have speculated about the possibility of occurrence of 
similar collective waves in solids. A collective wave of a 
more restricted nature has been reported in CdS crystals 
by Kroger, Prohofsky, and Damon.3 Their experiment 
involved the use of electrons drifting faster than the 
velocity of sound, which are therefore strongly coupled 
to the phonons. This problem will be discussed in a 
forthcoming paper. 

This paper is limited (as were those by Ward and 
Wilks, and by Dingle2) to a discussion of an acoustic 

* Supported by the Advanced Research Projects Agency. 
f Presently at Sperry Rand Research Center, Sudbury, 

Massachusetts. 
a . D. Landau, J. Phys. Moscow 5, 71 (1941), 11, 91 (1947). 
* (a) J. C. Ward and J. Wilks, Phil. Mag. 42, 314 (1951), 43, 

48 (1952). (b) R. B. Dingle, Proc. Phys. Soc. (London) A65, 374 
(1952). (c) M. Chester, Phys. Rev. 131, 2013 (1963). 

3 H. Kroger, E. W. Prohofsky, and R. W. Damon, Phys. Rev. 
Letters 11, 246 (1963). 

may lend some support to the rigid band approximation, 
a proposal which has enjoyed fair success in explaining 
several aspects of the electronic properties of the 
transition metals and their alloys. 
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phonon system which does not interact strongy with 
charged particles or optical phonons. We will place 

L emphasis on those aspects of phonon dynamics associ-
, ated with the periodic structure of solids. This requires 
[ that a distinction be made between normal collisions 
) and umklapp collisions. It should be kept in mind that 
j phonons undergo normal collisions in which the crystal 
j momentum of all the phonons is conserved, much like 

the collisions of a particle gas. It is emphasized that this 
. conservation applies regardless of the number of 

phonons or whether the collision involves phonons of the 
[ same or different phonon branches. The major difference 
[ between phonon and particle gases is that in addition 
L to normal collisions the phonons may undergo umklapp 

collisions which have no counterpart in particle gases. 
j In this context this paper examines in detail the collec

tive transport phenomena of a many-phonon system 
and develops a description of a collective harmonic mode. 

In Sec. II of this paper, the factors that determine 
> whether or not a system will respond to a density 

fluctuation by diffusive or harmonic behavior are dis
cussed qualitatively. 

^ In Sec. I l l , energy and crystal-momentum conserva
tion equations for phonons are derived from transport 
equations. The moments of the equations are then 
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The conditions necessary for the occurrence of second sound in solids are examined in some generality. 
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FIG. 1. Schematic instantaneous phonon distributions. That in 
the upper graph gives rise to a net phonon flow through the dashed 
vertical lines in the direction of the arrows. The resultant crystal 
momentum distribution causes an "overshoot" to the situation 
pictured in the lower graph, provided that the required transit 
time is short, compared to momentum-destroying relaxation times. 
The flow is reversed when the distribution assumes the form shown 
in the lower graph. The cyclic process is repetitive and gives rises 
to propagation of harmonic density fluctuations. 

evaluated, assuming that the distortion in the phonon 
field can be described by using a net drift velocity and 
a temperature fluctuation as parameters. The error in 
this two-parameter description of the distribution func
tion is expanded as a power series in the crystal mo
mentum and shown to be small under certain conditions. 
Use of a power series in this manner is one feature of 
our present study. 

Harmonic solutions for temperature fluctuations and 
net drift velocities are found in Sec. IV by simultaneous 
solution of the conservation equations. "Second-vis
cosity" damping for these harmonic solutions is 
examined. 

The harmonic solutions are shown in Sec. V to become 
the usual thermal-conductivity solutions for very short 
umklapp relaxation times. In Sec. VI, the feasibility of 
an experimental observation of second sound is investi
gated, using computed values of effective relaxation 
times in NaF. 

II. A QUALITATIVE DESCRIPTION OF SECOND 
SOUND IN NONCONDUCTING SOLIDS 

Ward and Wilks2 first proposed that second sound 
could be thought of as a density fluctuation in a 
"phonon gas." We wish to discuss this idea in qualita
tive physical terms, and by analogy with (first) sound 
in an ordinary particle gas. 

Figure 1 shows the density and flow situation to be 

expected for propagation of a wave. It is clear that a 
spatial variation in the density of phonons will result 
in a net drift from high-density to low-density regions. 
However, it is not necessarily apparent that, under 
certain circumstances, this flow can "overshoot" repeti
tively, rather than simply "relaxing" to a uniform dis
tribution. Wave propagation is familiar in the case of 
particle-density fluctuations, whereas diffusion is the 
common experience in "thermal-density" fluctuations. 

We have sought to illuminate this point by consider
ing ordinary sound propagation in a particle gas. We 
employ the usual hydrodynamic equations and the usual 
small-amplitude adiabatic assumption for plane-wave 
sound propagation in the x direction. An equation of 
state is also assumed to exist. The quantities of interest 
are: the particle density po+Pi(#,0 where p0 is the 
equilibrium density and pi{x,t) is the (small) density 
change in the sound wave; the velocity of an element of 
the gas Ux=0+ux, which is to say the gas is initially at 
rest in the reference frame. There is also an equation 
of state p=p(p,T) where p and T are the local pressure 
and temperature, respectively. 

The linearized hydrodynamic equations lead to 

dt dx 

(2.1) 

\<W \dx/ 

(api/dO+(*/to)(pon«)=o 
d(p0ux) dp 

^ p , 

Equation (2.1) is simply a statement of continuity, and 
the zero on the right-hand side indicates that there are 
no particle sinks or generators. Equation (2.2) is pur
posely written to include the force fx in addition to the 
internal stress arising from the pressure gradient. 

In particular, note that the left-hand side of Eq. (2.2) 
is the time rate of change of the particle current. Only 
if we neglect viscosity or inelastic impurity scattering 
is fx zero. The usual undamped sound wave solutions 
follow when fx = 0. A useful generalization is to assume 
a viscous damping fx= — (poUx/r) where r is a relaxation 
time. Such a term is appropriate in the low-frequency 
diffusion limit. In the absence of density gradients or 
applied forces, a particle current will decay with a 
typical relaxation time r. 

Equation (2.2) can then be rewritten 

d(poiix) poUx_ /dp\/dPi\ 

dt T \dpj\ dx/ ' 

and by elimination with Eq. (2.1) we have 

d2(pQux) 1 d(p0ux)^ /dp\d2(p0ux) 

\dpj dt2 dt J dx2 

(2.3) 

(2.4) 

Now the fundamental distinction between wave flow 
and diffusive flow becomes clear. For slow variations of 
Pou* with time, the viscous term dominates and any 
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density fluctuation relaxes by diffusion. When the 
viscous relaxation is slight and the relaxation time is 
long, spatial variations of the particle density will 
proceed in time as wavelike motions. Both diffusive and 
wave descriptions may therefore apply to density 
fluctuations in a particle gas. The choice is determined 
by whether cor<<Cl or cor^>l, respectively. 

The "phonon density" fluctuations can be discussed 
in the same way. The characteristic time r for relaxation 
of heat current is the umklapp or combined "umklapp-
plus-other-momentum-losing-process,, relaxation time. 
The common experience that heat-density fluctuations 
obey the diffusive description is a consequence of the 
low frequency at which they are conventionally studied. 
The exception is in liquid helium where relaxation times 
are very long, thereby permitting observation of the 
periodic fluctuation at low frequency. 

III. MOMENT EQUATIONS 

The applicability of the Boltzmann transport equa
tions to phonon wave packets was discussed by Peierls.4 

This application appears valid in most solids below ®D, 
the Debye temperature. 

Associated with the Boltzmann equation is a distribu
tion function giving the density of particles in specific 
modes. This distribution can be expressed as an equi
librium distribution plus small perturbations when the 
periods of the disturbances are long compared to the 
normal relaxation time r, and the mean free path for 
these collisions is short compared to the wavelength of 
the disturbances. It may have validity outside this 
regime but that does not concern us here. 

The full Boltzmann equation under the conditions 
discussed is 

dfk lrdfkdek dfkdejn /dfk\ 

—+- r ( — • tf-1) 
dt nL dri Ski dki dtiJ \ dt /Coi 

Here, /& is the number of phonons in the mode specified 
by the wave vector k, u is the ith component in con
figuration space, €k is the energy of mode k, kt is the ith 
component in k space, and col refers to the effect of 
collision processes. We will assume (i) there are no 
external fields acting on the system, (ii) the system is 
homogeneous, and (iii) renormalization effects due to 
phonon interactions are small. It will be understood 
throughout the remaining discussion that all quantities 
are assumed to be (coarse-grained) local in space and 
time. Under these conditions 

d€*/dr<=0. (3.2) 
and, by definition 

(l/ft)(d«*/dk,)« v,, (3.3) 
4 R. E. Peierls, Quantum Theory of Solids (Oxford University 

Press, London, 1955), p. 45. 

where vt is the ith component of the group velocity, or 
the velocity of the phonon packet. Equation (3.1) then 
becomes 

d/*/d/+div<v/*>= (dfk/dt)ool. (3.4) 

If one now sums this equation over all values of k 
one obtains 

(d/dt)(n)+div(nv) = Ancoi, (3.5) 

where (n) is the local number of phonons, (n\) is the 
net local number current, and Aweoi is the change, due 
to collisions, in the local number of phonons. If both the 
right and left sides of (3.4) are multiplied by ek and then 
summed over all k one obtains 

d(E)/dt+div(neY) = Aecoi, (3.6) 

where (E) is the total energy, (ne\) is the net energy 
flow, and A€coi is the energy gained in collisions. Multi
plying (3.4) by fiki and then summing over all k leads 
to the equation 

d d 
•—(ir*-)+E (vi»ftk$-)= Axfooi. (3.7) 
dt J dXj 

(Ti) is the ith component of the net quasimomentum, 
(Yj-nfiki) = (YjTTi) is the quasimomentum flow, ATT̂ O! is 
the change in quasimomentum through collisions. The 
general distribution function is written as 

/*=/*°+/*', (3.S) 
where fk' is assumed to be small compared to fk°. The 
two important departures from equilibrium in second 
sound are assumed to be variations in temperature from 
the ambient temperature, and net energy fluxes. 
Landau5 has shown that a steady net flow of phonons, 
has a distribution function 

/( v) = {exp[(e*-:X • ftk)/kBT-]-1 J"1, (3.9) 

where X is the net drift velocity. 
To account for slight temperature variations we set 

T-TO+TL (3.10) 

Here, T0 is the ambient temperature, assumed constant 
throughout the system, and 7\ is the small change in 
temperature. If the temperature and the drift velocity 
change in time, the system may have a slight distortion 
from equilibrium which cannot be described in terms of 
drifts and thermodynamic temperature changes. This 
extra perturbation can be expressed as a power series 
in k. The proposed form of the distribution function, 
as then, is 

r /(ek-X'fik- <pk2h2-fjLm3 ) \ - r 1 

* L v fo(r0+ro / J 
(3.11) 

6 L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon Press, Ltd., London, 1958), p. 204. 
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for X, <p, ix, and 7\ all very small, this can be expanded to 

/ ^ [ e x p e / ^ r o - l ] - 1 

X- hk+ *rt*A*+Mft»j&»+ ••• + e*(2yr0) 

exp(ek/kBT0) 

&xp(ek/kBT0)-lJ 

x-tik+vW+umn f-<*(2yr0) 
=f°+ f(f°+1) 

ksTo 
=/°+«/0(/°+l). 

Again the distribution function applies to cells within 
the system which are small compared to the macro
scopic distance measurements. 

The role of T\ is to increase the local number and thus 
the average local energy in a symmetrical way which 
corresponds to a locally higher temperature. The X term 
gives rise to a distortion in velocity space, but does not 
change the local number or average energy. The <p term 
distorts the distribution away from that expected in 
thermal equilibrium. A positive <p increases the number 
of phonons at higher energies; a negative cp. decreases 
that number. The terms of higher order allow further 
generality, but are not important in establishing the 
general features of second sound. 

The moments can be written as a constant part and 
a small variable part: 

(n)=(n)0+(n)i, 

(n\)=0+(n\)1, 

(E)=(E%+(E)l9 (3.13) 

(nev) = 0+(nev)i, 

<n>=o+<n>i, 
( v ^ t H (v;7r*)o+(vy7r;)i. 

All the constant terms are to be associated with the /o 
term in the distribution function. Since these moments 
are only to be used in the differential Eqs. (3.5)-(3.7), 
there will be no contribution from the constant terms 
and they need not be considered further. 

In macroscopic lattices the phonon level spacing is 
small and the summation can be performed by integra
tion. These integrals can be broken into a sum of terms, 
one for each term in the expansion of the distribution 
function: 

<»>i= (n)x+(n)Tl+(n)e+(n)u- • • . (3.14) 

An examination of the form of these moments shows 
that every power of k inside the integral requires another 
power of T0 to make the integral dimensionless. All 
terms of higher power in k will be of correspondingly 
higher powers of T/@D. At low temperatures. TQ<&®D, 

the effect of these higher order terms in the density is 
negligible. This reasoning holds for all the moments 
needed in the moment equations. 

For the rest of this development the terms in the 
distribution function with powers of k higher than two 
will therefore be neglected. The term <ph*k*fl.(f+l) 
will be an estimate of our ability to describe the system 
as having temperature variations and net drift velocities. 
If this term is large, the system can no longer be de
scribed well in thermodynamic terms. The evaluation 
of these moments is straightforward. For isotropic 
materials, the results are 

(n^ATi+B^ATMCTt/iv*)^)*, (3.15) 

<nv>x=«l«liiroX, (3.16) 

{E)1^CTl+D<P, (3.17) 

<»€V>=iWi«iCrfl3i, (3.18) 

<n)=F^«j(cr0/(AvA, (3.19) 
<Vir<> = 7C7 ,

1+7Z>^«*Cr1+iZ>^. (3.20) 

Because normal collisions involve phonons pf different 
branches of the phonon spectrum, the constants in 
Eqs. (3.15)—(3.20) must be appropriate averages over 
the branches. For example, 

1 r rQ< fik cos0 
# = — £ / / ft*„*(v,cos0) f>(f>+l)k2dk<m 

8 T 3 ' JnJo kBT0 

1 / @ A 
« E — 4 — ) , (3.21) 

' v/ \ Tj 
and 

1 r fQ* fik cosd 
F = — £ / / ft* cosd —f°(fo+l)k2dkdti 

8TT3 * JQJO kBTQ 

1 / @ A 
« L — J A— J- (3.22) 

' v*5 \ To/ 

In these equations, <r is the phonon branch index, / 4 i s 
the fourth-order Debye function, Qv is the maximum q 
value of branch <r, Q is the total solid angle, and ®ff is 
the Debye temperature for branch o\ The other con
stants are functions of To, but not of 7\, X, etc. The 
constant C is the specific heat. The simplifications indi-
caded in Eqs. (3.5)~(3.22) are valid in the Debye ap
proximation. Details of the integration have been de
scribed by Prohofsky.6 

Although phonons behave like Bose particles, their 
number is not necessarily conserved on collision. In 
fact, one expects three-phonon collisions to be the 
dominant type at low temperatures. The equation given 
by Ziman7 for the collision rate of three-phonon colli-

6 E. W. Prohofsky, thesis, Cornell University, 1963 (un
published), 

7 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 
England, 1960), p. 275. 
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sions is 

Aft; - / / / & . - ak>-ak»lPk
h'k"dzkd*k'd*k", (3.23) 

where Pkk'k" is the equilibrium probability of phonon k 
splitting into phonons kf and k". Phh'h" contains factors 
which insure that the net change in the k vector is either 
zero or a reciprocal-lattice vector, and that the total 
energy is conserved. In our terminology, 

1 
a*= (X-fik+ekTt/To+vm2). (3.24) 

ksTo 

One can assume that relaxation times involve aver
ages weighted by the energy content of the modes. 
Under these conditions, the collision terms are shown 
in Appendix A to be 

Anz col= - (C7V>2>av)(l/r) <p, (3.25) 

Aecoi=0, (3.26) 

ATTCO1= - (CTo/(v*U)(m/ru)X, (3.27) 

1/T=1/TN+1/TU. (3.28) 

TN is the relaxation time for all interactions which con
serve crystal momentum within the phonon distribution. 
TV is the relaxation time for all interactions in which 
crystal momentum is lost by the phonon distribution. 
We may generalize TU to include all crystal momentum 
losing processes such as boundary and impurity scatter
ing. It is emphasized that these relaxation times are 
weighted averages over the phonon distribution. 

If higher-order collisions are considered, the form of 
the collision terms remains the same. The relaxation 
times, of course, become more complicated functions. 

The moments can be substituted into the moment 
Eqs. (3.5)-(3.7) to give the "phonon gas equivalents" 
of the linearized hydrodynamic equations 

(d/dt)(A T1+B<p)+divfX= - (CTO/(V*)„T) <P , (3.29) 

(d/dt)(CTi+D<p)+divNX=0, (3.30) 

(d/dt)YX+y grad(C7\+Z^) 
= -(CTO/3(V*)&VTU)1. (3.31) 

The coefficients A, C, D, etc. are functions only of the 
material and its ambient temperature T0. The only 
parameters to vary with time and space are Th !, and <p. 

IV. PROPAGATION SOLUTIONS 

To find a solution which would be similar to a plane 
wave of second sound, assume 

T ^ T Y e x p f t ^ - q - r ) ] , (4.1) 

X=X° expD(a>/-q.r)], (4.2) 

<p= <p° expft(a*-q-r)]; (4.3) 

substituting into Eqs. (3.30)-(3.32) 

iwA ZV+|>B+(Cr0/<z>2>avT)>°-*q• W = 0, (4.4) 

ia,CT1°+ia>D<p0--iq-'X0N==0, (4.5) 

mCr1°~i7q^^0+[^F+(Cr0 /(3z;2) a vrc7)> ( )=0. (4.6) 

From Eq. (4.6) it can be seen that q||̂ ,° and the vectorial 
notation may be dropped. For the plane wave to exist, 
these equations must have a solution; i.e., the determi
nant of the coefficient of the parameters Ti°, 7.°, and <p° 
must equal zero. The solutions are 

0- yN (v\ 

Y+{CT,/3io>Tu{v%v) 

iC*T0 

(v\vr(CB-AD)' 

(4.7) 

(4.8) 

Equation (4.7) corresponds to forward and backward 
propagation of second sound. In Eq. (4.8), co is imagi
nary, hence this solution corresponds to a pure decay 
mode. 

The relationships between X°, <p°, and Ti° can be 
found from Eqs. (4.4)-(4.6). 

co CB-AD+(C2To/ia>T(v2)av) 
X°= 7Y>. (4.9) 

q NB-FD+(NCT0/U»T(V2)&V) 

AN-CF 
7Y>. (4.10) 

NB-DF+(CT0/io>T(v2U) 

If the pure imaginary solution Eq. (4.8) is substituted 
into Eq. (4.9) 

X=0. (4.11) 

Hence, solution (4.8) applies to temperature fluctuations 
which have no associated transport. Where a net quasi-
momentum exists, only umklapp collisions [Eq. (4.7)] 
can cause relaxation. 

Equation (4.10) bears out the assumption that for 
cor<3Cl, <p—* 0. In this limit, the system can be described 
as a temperature wave with very small higher-order 
distortions. The dispersion relations for the second-
sound wave [Eq. (4.7)] can be reduced to 

g2=(3co2/^2)av[l+(icor^)-l] (4.12) 

for spherical symmetry. This can be solved for real and 
imaginary parts: 

qR*= (3co2/2(z;2)av{l+[l+(corC;)-2]1/2} (4.13) 

^2=(3co2/2(.2)av){[l+(corc)-2]1/2~l}. (4.14) 

The expected second-solution occurs when the damping 
due to umklapp collisions is small, i.e., cortr<3CL In this 
limit Eqs. (4.13) and (4.14) lead to 

flu = - = ( — ) [ l - | ( ^ ) - 2 + . . . ] - — - , (4.15) 
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FIG. 2. Damping as a function of second-sound frequency. The 
frequency "window" Ty"1<w<T_1 is the region of second-sound 
propagation. In the cross-hatched area, the real and imaginary 
parts of the wave vector for second sound are equal, hence no 
harmonic propagation exists; it is the region of ordinary thermal 
conductivity. In the region for which CO>T~1, second sound is 
damped by "second viscosity"; thermal conductivity is limited by 
boundary scattering. 

where 

<vi>.v=(-) « (4.16) 

and 
qi**-ll/*iiTu. (4.17) 

Applying the limit <JOTU<^1 to Eq. (4.9) gives 

X°=«/ff(C/#)ri°, (4.18) 

and Eqs. (4.13) and (4.14) become 

qR
2=qi2=3W2(v*)&vTu, (4.19) 

The limit given in Eq. (4.19) will be shown to be equiva
lent to the usual equation of thermal conductivity in 
Sec. V. 

When the combined relaxation rate r"1 is small, i.e., 
at very high frequencies, we would expect individual 
phonons to travel unhindered from one region to the 
next and any disturbance will propagate with the 
velocity vi rather than vn. As fln~(fli)av/v5, it is clear 
that second-sound is a statistically collective propaga
tion utilizing the phonons, and cannot be maintained 
for co7v£>l. 

To the second-sound wave the lack of normal colli
sions appears as a leaking of particles out of the co
herent wave. We follow the treatments of related prob
lems in liquid helium8 and suggest that the effects of 
this loss can be described in terms of a "second vis
cosity.'' The wave propagation will be expected to have 
velocity vi in the "collision-free" situation (cor»l) and 
to have second-sound velocity vu in the completely 
satistical situation (COT<3CL). Large dispersion due to 
"second viscosity" will occur for cor~l 

This situation is treated quite generally by Landau 
8 C. T. Lane, Superfluid Physics (McGraw-Hill Book Company, 

Inc., New York, 1962), p. 67. 

and Lifshitz.9 Their results, when applied to this situa
tion, give an additional imaginary part qi to the 
second-sound wave vector: 

qi'= (-«V2«ii8)(»i2-t>n2)~ -<o V » n • (4.20) 

The total imaginary part of the wave vector in the 
second-sound region (<OTC£>>1) then becomes 

qi^(-l/vn)L(l/2ru)+^T']. (4.21) 

The imaginary part of the wave vector is shown as a 
function of o> in Fig. 2. It can be seen from Eqs. (4.14) 
and (4.21) that the conditions for second-sound propa
gation are 

T I T 1 < « < T - 1 . (4.22) 

V. THERMAL CONDUCTIVITY AND 
THE DIFFUSION LIMIT 

The amount of thermal energy transferred by the 
phonon system is the moment (new) from Eq. (3.18): 

where N is related to the total energy density of the 
system. From Eq. (3.9), X is seen to be a net drift 
velocity of the excitations when the assumptions about 
the distribution function hold. In the spherically sym
metric approximation 

Q=iCT0\. (5.1) 

In the case of phonons, this is equivalent to the product 
of the total energy density and the drift velocity. This 
formula is identical to that appearing in the expression 
for superfluid heat transfer. 

If one now substitutes Eq. (4.18) into Eq. (5.1), 

Q^Nio/qXC/lVTi^CTfa/q) > (5.2) 

and for OJTŴ >>1 
qi~0; (5.3) 

whence 
G)/q~a}/qR=vii (5.4) 

and 
Q=CT1vn. (5.5) 

Equations (5.1) and (5.5) both describe heat transfer. 
Equation (5.1) applies to the transfer of energy by a 
fluid flow, whereas Eq. (5.5) describes propagation of 
the energy by a wavelike mechanism. 

Equation (5.2) can be written in the more usual form 
involving a temperature gradient, as 

ri=ri°expi(co/--q-r) (4.1) 

gradr= ri°(-ig)[expf(w/~qT)]; (5.6) 
whence 

0 = C(a>/-iq*) gradTi, (5.7) 
9 L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon 

Press, Ltd., London, 1959), p. 304. 
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and in the limit, where COT?7<3C1, 

qR2=qi2=3o)/2(v*)&vTu (4.19) 

Q=Cl(v*)„ruP*dT. (5.8) 

This is the equation found in the usual derivation of 
thermal conductivity if the heat-current relaxation is 
very rapid. The region of CCTU<K1, then, is the usual 
diffusive thermal conductivity region, as noted in the 
qualitative discussion in Sec. II. 

VI. FEASIBILITY OF EXPERIMENTAL OBSERVATION 

In order for second sound to be possible in solids, 
there must exist an appreciable difference between the 
reciprocal normal and reciprocal umklapp relaxation 
times. At low temperatures, the normal relaxation time 
varies as some power of T0, while the umklapp relaxation 
time varies exponentially with To. It therefore seems 
reasonable that, below some temperature, a "window" 
will appear in the frequency spectrum wherein the 
propagation of second-sound becomes possible. 

A rough experimental evaluation of the relaxation 
times can be obtained from thermal conductivity meas
urements. The relaxation times shown in Table I are 
average relaxation times as defined in Eqs. (3.25),(3.27), 
(3.28), computed by us and based on data by Walker.10 

At about 10°K, the calculated r u and TN differ by more 
than a factor of 104, indicating that a frequency in the 
range 103-105 sec"1 should satisfy the inequalities of 
Eq. (4.22). 

In Table I, vc represents the frequency at which heat 
conduction becomes more like fluid flow than diffusion. 
Above 15°K, no second-sound effects would be seen for 
frequencies below 1 Mc/sec. Below 9°K, second sound 
could be present for frequencies above one cycle/sec, 
were it not for the decreased probability of normal 
collisions. 

The column vc/2 in Table I represents the damping of 
the second-sound wave by umklapp processes; |CO2TJV 

shows the damping due to second viscosity; and coi 
which is the total damping given by coi=qi/vu. All these 
figures are for co= 105 sec-1. The smallest total damping 
occurs at 10°K, at which temperature the dissipation 
is not so large as to rule out experimental observation 

TABLE I. Computed relaxation times and damping coefficients as 
a function of temperature in sodium fluoride. 

TU VC—1/TU TN VC/2 $co2riV 6)1 

°K (sec) (sec-1) (sec) (sec-1) (sec-1) (sec-1) 

20 2.2X10-7 4.9 X106 1.6X10~8 2.4X106 5.5 X101 2.4 X10* 
15 5.2 X10"6 1.9 X105 7.0X10-8 9.1X10* 2.3X102 9.1X10* 
12 1.1X10-4 9.5X103 2.1X10-7 4.7X103 7.1X102 5.4X10* 
11 3.8X10-* 2.7X103 4.3X10-7 1.3X103 1.4X10* 2.8X10* 
10 1.9X10-3 5.4X102 5.3X10-7 2.7X102 1.8X108 2.0X10* 
9 1.1X10-2 8.8 X101 9.0X10-7 4.4X10 3.0X103 3.0X10» 
7 2.2 4.6 X10"1 3.2X10-8 2.3 X10"1 1.0X10* 1.0X10* 
5 7.9X103 1.3X10"* 1.7X10-6 6.3 X10"* 5.7X10* 5.7X10* 

C. T. Walker (private communication). 

of second sound. It should be emphasized that the fore
going statements in this section apply only in an infinite, 
pure crystal. In a real experiment, allowances must be 
made for boundary and impurity scattering. 

In either a pulse experiment or a standing-wave 
experiment, it is essential that a major fraction of a 
wavelength be contained within the crystal. With the 
usual size of pure crystals (~1 cm), frequencies of the 
order of 105 sec-1 are necessary because of the large 
velocity of sound (105 cm/sec). The generation and 
detection of these high frequencies make the observation 
of second sound in solids more difficult than is the case 
in liquid helium (where z>i^l03 cm/sec), where lower 
frequencies can be used. An additional consequence of 
the use of higher frequencies is the increased damping 
due to second viscosity. 

It may therefore be necessary to use much larger 
crystals in order to observe the effect. A larger crystal 
would permit the use of lower frequencies and would 
thereby reduce the effect of second viscosity. The ex
periment could then be performed at lower temperatures, 
where damping by umklapp processes is diminished. 

The ease with which second sound can be propagated 
in a given material can qualitatively be determined from 
curves showing thermal conductivity as a function of 
temperature. A large value of the maximum low-tem
perature thermal conductivity indicates a long umklapp 
relaxation time, which, in turn, suggests small amounts 
of umklapp damping of second-sound waves. The size 
of the crystal used in the measurement of the thermal 
conductivity determines the minimum wavelength for 
which a collective wave may be propagated in that 
crystal at the temperature of the conductivity peak. 
Therefore, for a crystal and frequency appropriately 
matched, the optimum temperature for observation of 
second sound will be slightly higher than that of the 
conductivity peak. 
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APPENDIX A 

We wish to show and define the relevant moment 
transfer via collision terms listed in Eqs. (3.25)-(3.27). 
Let Anz\ be associated with the contribution to An% 
from the X term in a& of Eq. (3.12). Let Anw be associ
ated with the Ti term, etc. 

r r r\ cos0 
AW3X- / / / (k-k'-k'Wk"d*k. (Al) 

J J J kBTo 

For normal processes, 

A»sx=0. (A2) 
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For processes in which quasimomentum is lost, 

* G 1 
A/*3X=-£ . (A3) 

G kBTo TG 

TG is the relaxation time associated with an umklapp 
process in which crystal momentum fiG is lost. 

Here, C/T represents a reciprocal collision relaxation 
time weighted with the energy content of the various 
modes and 

1/T=1/TN+1/TU. (A9) 

The A€Coi term in Eq. (3.2) can be found by multi
plying each collision in Eq. (3.23) by (e&— €*/•— €&"). 

In the symmetric case we can assume that the G T h i s f a c t o r ^ fee ^ f J^ ^ ^ ^ ^ ^ T h e 

vectors have reflection symmetry and that the sum over . , , n ,. 
„ . , , , . . . J

 J
 J , ,. - energy is conserved at all times. 

Cr includes both a positive term and a negative term for 
each magnitude of G, Therefore, Eq. (A3) is also zero. 

A€Col = 0 . (A10) 

A â ' - ( ( ( — 
J J J kBTo' 

kBTo2 

as (ei—€i'~«A") = 0 f°r all collisions. 

-(«*-«*'-«*'W*"<P* = 0, (A4) The A7T»COI term similarly can be found by multi
plying Eq. (3.23) by h(k~k'-k") cos0. 

ft 

*,= [[[ —(A*-*'*-*"W'*"d»*. (A5) Air*»1~ + ^ T j j J (k-k'-k") A«; 

The contribution to the specific heat of a single mode is 

(A6) 

Xcose(ak-ak>-ak»)Pk
k'k"dzk (A*1) 

1 dzk 
dC= fiVk2f°(f°+1)-

A2At-

ifcsZV " " (2TT)3 

Using Eq. (A6) and the usual assumptions concerning 
averaging of relaxation times weighted by the energy 
content of the single-particle modes we can rewrite 
Eq. (A5) as 

To r r r <^2 

A n 8 , = — / / / (k2-k'2-k"2)Pk
k'k"d*k, (A7) 

v2 J J J kBT0
2 

To C 
A » a , = - — v. (A8) 

(fl2)av T 

IZBTQ 
Xcos2$Pk

k'k"d*k (A12) 

= 0 for normal processes, (A13) 

TQ 1 C 
-Xi . 

(v2\v 3 TU 

By symmetry arguments, 

A7Trcol= A7T^Col= 0 . 

(A14) 

(A15) 


